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PLASTIC STRIESS-STRAIN RELATIONS BASED ON INFINITELY

MANY PLANE I,0ADING SURFACES*

by
J. Lyell Sanders, Jr.**

ABSTRACT

This paper is concerned with the development of a
theory of plastic stress-strain reiations for work hardening
materials based on infinitely many plane loading surfaces, The
stress-strain relations belonging to this class are closely
related to those the the linear incremental type but have the
property of being integrable in a restricted sense. They are
also non-linear in that a corner appears in the yield surface
at the point of loading. A stress-strain relation of this type
for isotropic materials is presented. The problem of including

a description of Bauschinger and allied effecis within the
theory is considered,

* The results presented in this paper were obtained in the
course of research sponsored by the 0fice cof Naval Research
under Contract N7onr-35801 with Brown University.

*

* Research Associate in Applied Mathematics, Brown University.
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Introduction

Some recent *»velopments [l]f "2] have made it feasible
to investigate the possibilities of a certain class of non-
linear incremental stress-strain relations for work hardening
materials., Linear inciemental stress-strain relations have been
extensively investigated and results of a quite general nature
have been achieved [3 ], [% ]. Studies of the behavior of metals
from a phenomenological point of view have revealed a few condi-
tions which greatly restrizt the possivle forms of stress-strain
relations, linear or not. In particular a work hardening condi-
tion postulated by Drucker [2] has for reaching consequences.
Under this condition he has shown that the yield surface must be
convex, that at any smooth point of the yield surface the strain
increment vector must be normal to the surface for loading from
that point, and that there are certain resFrictions on the direc-~
tions of the strain increment vector for 1§ading from a corner.
From these last restrictions it follows that the stress-strain
relations must be non-linear for loading from a corner,

Before these latter results were obtained a stress-
strain relation based on physical consideration of a crystal
ageregrate had been proposed by Batdorf and 3Budiansky [5 J. It
was later shown to satisfy Drucker's wor' hardening condition

and to possess a uniqueness and a variational thecrem [6 ], This

- —— — o e, D s Y 8 A . o s s

* Mumbers in square brackets rafer to Ribliography at the end
of the paper.
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theory, called the slip theory of plasticity, 1is non-lineer in
that a corner is always formed in the yield surfacc at the Joad-
ing point, Since the stress-strain relations of slip theory
were formulated without mention of a yield surface and since
practically all previons theories had been linear (and hence
properly applicable only in case of a smooth yield surface) it
was thought that slip theory stood in a class by itself,

The wor! done to obtain theorems regarding the nor-
mality of the strain increment vector to the yield surface was
partly motivated by a desire to use the corrcesponding yield
function (or loading function) as a plastic potential in the
stress-strain relations. Recentlv oiter [1] showed that the
concept of plastic potential mey be retained even if the yield
surface is singular (with corncrs, ridges, etc.) by the simple
device of introducing more thnan one loading function. The yield
surface is the boundary of those points in stress space which
represent elastic behavior with respect to all loading surfaces
and of course the yiecld surface is singular where two or more
loading surfacecs intersect. In such a theory of plasticity the
total plastic strain increment ig the sum of the contributions
from each loading function. The stress-strain rclation is
necessarily non-linear at corners in the yiecld surface but may
possibly be non-lincar only at the corners. Certain uniqueness
and variational thcorems were extended by Koiter to cover this

class of non-linear theories.* He also showed that slip theory

* Which also satisfy the work hardening condition and the so-
called conditions of continuity and consistency [3 ].

L
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belongs to this class. The loading surfaces of slip theory are
an infinite set of planes,

A qualitative discussion of theories of plasticity
based on many plane loading surfaces was given in [7 ]. It was
shown that in certain cases the resulting stress-strain rela-
tions are integrable in a restricted scnse and thus partially
resemble the stress-strain relations of deformation theories of
plasticity. The present paper is concerned with further develop-
ment of the theory., A stress-strain relation for initially
isotropic materials is constructed and certain interesting
special cases are discussed, It is shown how an account of
Bauschinger and allied effects may be included within the theory
by postulating a relation hetween the displacerents of the in-
finitely many loadingz planes which envelope the yield surface,

A function depending on loading history alone is introduced

winich determines both the yield surfesce and the plastic strain.

Plane lLoading Surfaces in Genera

e e v —— caa———

We begin by noting thct at least some planes in stress
space have a direct physical interpretation. The shear stress
in the ¢irection A; on an element of area normal to p; is given

by

where Ki and By are unit vectors, The geometrical representation

in stress space of the equation v = constant is of course a plane,
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Suppose that the critical shear stress on a certain slip system
in a single crystal is k, In this case « = k might be regarded
as the initial yield condition for the slip system, the corres-
ponding plane in stress space as the initial yield surface, and
the function T of the stresses (1) as the loading function. One
may easily verify that the shear strain due to slipping is repre-
sented by a vector normal to this plane (in nine dimensional
stress space). If a plane loading surface is introduced for all
possible orientations of slip systems in & random aggregate of
crystals and certain other assumptions are made than the result
is the so-called slip thecory of plasticity [ 5 ]j. In this paper
the thecry of stress-strain relations for work hardening materials
based on an infinite number of planc loading surfaces is con-
sidered as a subject in itself, YNo attempt will be made to
develop a rational t heory based on the physics of crystal aggre-
gates but some suggestions from that source will be of use.
Suppose that an initial yield surface for a strain
hardening material has been given., Such a surface must be convex
hence it can be regarded as an envelope of planes which nowhere
intersect the surface., ¥Wor the present assume that each plane
behaves as though the others were not there. As loading into the
plastic range proceeds each niane is moved outward parallel to
itself by the loading point more or less or not at all depending
on the loading patn. Two examples of the resulting yield bound-
ary for biaxial loading are shown in Figs. 1(a) and 1(b). BEach

rlane remains as far out as it has ever been pushed by the
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loading point during the course of loading and ordinarily there
is a corner in the yield surface at the final load point.* At
each stage of loading the yield surface is convex, as it must be
for a work hardening material according to a theorem of Drucker
[2 1.

The plastic strain is assumed Lo be the sun of con-
tributions from each loading plane. The contribution from a
single plane is assumed to be given by a linear stress-strain
relation of the Prager-Drucker tyove in which the loading function
f is linear and homogeneous in the stresses and where f = ¢ > O
is the equation of the loading plane. The contribution of a

group of planes whose normals lie within a small solid angle is

given by:

Op L] .

b S - ' B

5 ey G(f,w) nyy f dw £ >0

) (2)
=0 f <O

where nij = TS is a constant normal vector to one of the load-

i3

ing planes, bw is an element of solid angle, and G > O if ¢

exceeds a certain value which is the yield point for this plane
but vanishes otherwise, T"e possible dependence of G upon the
orientation of the loading nlane is indicated by writing it as

a function of w, Fquation (2) may be integrated with respect

to time to give:

r = y
See [ 8 ] for recent exp~rimental evidence 2of corners.
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p
5 Eiﬁ = H(f,w) ny dw (3)

(where %% = G) «s may easily be verified by differentiating <3).

The total plastic strain 1s obtained by integrating over all

orientations of loading planes:

ep = foe? (i)

The value of f apnearing in (3) is the largest value attained

during loading and is a measure of the distance the loading

plane has been pushed out. As a result of the Integrability of

(2) the strain contributed by each loading plane depends on the

loading path only in so feir as it depcnds on the distance the

loading plane has been pushed out during the course of loading,

As a consequence

of this intezrability the following statement

may be made concerning the stress-strain relation (4): "The

total plastic strain is the same for any two loading paths which

result in the same yieid surface," 1In this sense the stress-

strain relation is path independent.* This of course is not the

same as saying that the total plastic strain is the same for any

two loading paths whicl: reach the same final load point,

Any loading path resulting in a yield surface which

could also be produced by a radiiasl loading path will be called

a "nearly radial
loading path OPQ
path OF'Q., Uote

loading path." 1In Fig. 2 the nearly radial
results in the same yield surface as the radial

that a path which is not nearly radial (OP"P')

i In the case of

slip thecry this theorem was known to its autiors,

oo
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may possibly be made so by further loading (OP"P'Q)., 1In Fig. 3
the loading point has reached P by a nearly radial loading path.
If the loading path proceeds into the shaded region then all

planes previously loaded continue to load. This region will be

called the region of total loading. Any loading path which

always proceeds into the region of total loading is nearly radial.

So far it has been assumed that each plane acts in-
dependently of the others and that no plane moves unless the
loading point moves it. Under such an assumption the yield point
in compression is unaitered by loading into the »nlastic range in
tension. This however is not in accord with experiment. Often
hardening in tension produces & softening in compression known
as the Bauschinger effect. The yield points in tension and com-
pression at right angles to the original direction of luading
nay also be affected (cross effect), In theory at least the
whole yield surface can expand uniformly. 1In general of course
the whole yield surface is affected in some way or other by any
kind of loading and not just part of the yleld surface as was
indicated in Fig. 1, In order to produce these effects it is
necessary to assume some sort of interdependence among the load-
ing planes.

The number associated with a plane, which completely
determines its position, is the distance of the plane from the
origin (exactly how distance is to be defined in stress space
will be discussed later), It scems best to abandon the use of a

loading function as such and to concentrate attention upon the

ey X
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changes in distance* of the planes from the origin as loading
proceeds. The desired interdependence between the loading planes
may be achieved by postulating a relation between the motions of
the various planes. It will be assumed that the loading of a
given plane induces a motion in any other plane according to
some rule which involves the orientations of the two planes and
the measure of loading of the ziven plane, Only those planes in
contact with the loading point ray be said to be loading, thus
the motion of the loading point completely determines the total
motion of the planes being loaded. FHowever, the planes being
loaded induce a motion in each other which when subtracted from
their totzl motion leaves a rewinier to be accounted for., This ;
remainder which is czalled the direct motion will be taken to be ,#
the measure of loading. At this time the reader is asked to i
accept the following statement on faith, If a suitable relation
between the direct and induced motions is given, and the loading
path is given, then the requirement that the direct motion shall
always be in the loading (outward) sense results in a determinate
system, A partial justification of this statement is made later
in the paper. The situation is a little clearer where the in-
duced motion is very small for then the yield surface is almost
the same as thougir the nlanes moved independently.

There is at least an intuitive connection between these

notions and the behavior of crystal aggregates. During plastic

Distance in stresss snace is defined later.
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straining the inactive slip systems are hardened as well as the
active ones, a phenomencn known as latent strain hardening.

This suggests the induced motion of loading planes. That it 1is
possible to obtain reasonahle results bascd on the above assump-
tions has been shown by actuvally constructing a few exauples.

In these examples the type of behavior exhibited by
some known stress-strain relations possessing a Bauschinger
effect [91, [10] , [11] hss been duplicated, The yield bound-

ry alter biaxial loading according to a typical theory of this
kind is shown in Fig. 4.* The initial yield boundary mizht be
the Jo ellipse. After loading in tension to P this ellipse is
enlarged and displsced to the right. In an example constructed
using plane loading surfaces acting interdependently the be-
hevior illustrated in Fig. 5 was obtained. The greater part of
the vield boundary is modified in the same way as before but
now a corner appears at the lcading point P, By varying certain
parameters involved the corner at P may be made as blunt as we
please, The behavior shown in Fig. 1 and in Fig., 4 may be
obtained as limiting cases., The yield boundary according to
simple J» flow theory is also obtaineble as a limiting case.

In the stress-strain relations for this theory the
direct motion of a loading plane is ta%en as the mcasurc of its
contiribution to the plastic strein rather than thzs total motion

so that for a small group of planes:

| — - — v - -——

Drucker's [ 2 ] definition of a work hardening material does not
require the origin to be inside the yield surface.
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b e,} = H(ry,w) ng dw (5)

vherc r; is the direct motion. The integrated form of (5)
naturally raises te question of path indcpendence., About the
best that can be said at present is that if the yield surface
determinas the direct motion thien the total plastic strain is
the same for any two loading paths which result in the same yield
surface, This amounts almost to a tautology. The difficulty

is thzt although the direct motion determines the yield surface
the converse is not true unconditionally. Certainly any un-
qualified assertion conccrning path independence must be false
in some of the limiting cases. However there are cases in which
path independence is possible.

Fisure 6 illustrates a case bascd on the examples
constructed in a later section in which two different loading
paths OFQ and OP!'Q resnlt in tho same yield surface and total
plastic strain. There is a rocgion of total loadinz beyond Q
into which a ncarly radial loadine path may proceed; it is shown
bounded by the dashed lines, In the 1limiting cases in which the
corner becomes blunt2d the rcgion of total loading narrows down
to a line so that nearly radial loeding becomes strictly radial
loading,

The matiwmatical formulation of the problem of finding
the yileld surface according to the present theory involves an
integral equation. The conditions vnder which thc problem has

a unique solution have not yct been found. Therc is no doubt
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about unigueness in the cxample solutions given but only nearly
radial loading naths have been concidered, Even if suitable
conditions are imposed to insure the unique detcrmination of

the direct motion it remains to be shown that the corresponding
stress-strain relations lead to unigue solutions of boundary
value problems. In order to extend the vniquencss theorem to
cover the case of interdependent motion® it may be that some
additional restrictions must be placed on the rule governing the
rclation between the direct motion and the induced motion,

The problen of determining tha vield surface for
loading paths which are not noarly radial is considerably more
complicated than in thz c¢ase in which the loading planes move
independently. The vield surfacc resulting from such a loading
path might loo) something like Fig. 7 in which 0OPQ 1s a broken
line with a sufficiently larse turning angle at P, A corner
previously formed at P has been rounded off and a new corner
formed at Q.

The present theory affords a means of taking
Bauschinger and allied cffects into account without explicitly
introducing strain into thc loading functions as has been the
usual practice to datc., Ulowever the attendent complications in
determining the yield surfac~ have not been avoided. Although
it is still convenicont to sweal of loading plancs there doesn't
seenn to be anything left which could strictly be called
function. The dircect motion is sort of an intermediate variable

determincd by th? loading histcrvy and which in turn determines

*
Koiter's theorem [1] is applicable in the case of independent
Mo tion,

a loading

R~
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both the yicld surface and the plastic strain,

Stress-Strain Relation for Isotropic Materials.

In this saction the loading planes are assumed to
move independently, A general stress-strain relation for iso-
tropic materials is constructed. The stress-strain relations
for slip theory and for a theory which agrees with J, deformation
theory for nearly radial loading are written down as special cases.
In dealing with plane 1lcading surfaces a certain
amount of mathematical machinery of a geometrical nature is
alniost indispensable for concise expression of the ideas involved.
Once a suitable stress space has been constructed, and some
appropriate coordinate system has been defined in this space,
writing down a stress-strain relation for isotropic materials
based on infinitelv many plane 1loading surfaces 1is almost a
trivial matter. Since plastic strain is assuned to depend only
on the stress deviator, which has five independent components,
a stress space of five dimensions is indicated. For the five
cartesian coordinate members it is possible to choose linear
combinations of the stress deviator such that a "stress vector"
in stress space transforis li%e a vector when the corresponding
stress tensor is transformed by a rotation of the physicel co-
ordinates., The length of the stress vector, beinz an invariant,
is not changed by the transfermation., This inevitably leads to
a distance function in stress space proportional to* (Jg)%. In

such a stress space any quantity such as distance, angle, area,

v 4 i

Jrappes Tepy

i A B i TR T O
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etc., defined in terms of the metric may be used concistently
because it is an invariant with respect to changes of cocrdinates
in physical space. A stress space of this kind is constructed
in anpendix A. Several systems of coordinates for this stress
space are defined in the appendix which also contains other de-
tails of a geometrical nature, Only a brief description of these
results will be given in this section as the need arises,

The contribution to the totasl nlastic straiin of a
group of planes which were initially tangenf to the initial yield

surface over an elemnent of arca da 1s assumed to be given by
3 eg = H(fyng) ny da (@ = 1;250:,5) (6)

where e, 1is the plastic strain vector, and n, is the unit normal
vector to the clement cf area directed in the loading sense, The
stress vector is denoted by x, and f is given by f = Ny Xy

or rather the maximum value of this quantity attained during the
course of lecading, H > O if f > n, R, where Ra is the vector
from the origin to a point within the element of area da on the
initial yield surface, otherwise H vanishes. The contributions

of 211 planes are sunmed to et the total plastic strain:

eq = Jq 11 Hg da (?7)
/S

S is the initial yield surface which is the envelope of the
initial positions of all the loading nlanes., The stress-strain
relation (7) is in general anisotropic; furthzr specialization

is necessary to arrive at a relation apnlicable to initially
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isotropic materizls,

In appendix A a special spherical coordinate system

is defined in which

and (8)
2

= e 50
J3 = e p- cos 39h
Three other coordinate angles 6., ©5, 93 are introduced and the

transformation of coordinates is given by equations of the forms

w -
s "r/

r
o4 )

a (Qp) (p = 1,2,3,"+) (9)

vhere Eaza = 1, The equation of the initial yield surface of

an isotropic material in these coordinates is given by:
p= P(Q)) (10)

Isotropy requires that all planes bz treated equally
which are initially tanzsent to the initial yield surfacs along
its intersection with a2 cocrdinate surface 94 = constant, The

special form of the stress-strain relation (7) for initially

isotropic materisls is thus:

e, = j; n(f,0y) ny da (11)
or more ex¥plicitly:
ey = JL H(f’gh)(ga

_E.'_.agal{»ﬂ 2
5 56;)? sin 6, sin 36, d@l dOZ d93 dOh . (12)

o
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where I = 0, f <P n, §, . Sometimes some other coordinate
system is more convenient than the one used in (11); in a

general system of coordinates this relation may be written:
Eg = j H(f,J3*) ng da (13)
s

where J3* is the value of J3 at the point of tangency to the

yield surface of the loading plane in its initial position.

The simplest special case of the stress-strain relation

constructed above is that in which the initial yield surface is

p = k and all planes are treeted equally, in this case:

N
eq = H(f) ¢, da (H=0, f< k) (1h)

ds

The initial yield surface is of course the Mises yield surface
which is a sphere in the present stress space. For radial
loading (or nearly radial loac¢in~ for that matter) the strain
vactor must have the same direction as the stress vector because
oif the perfect symmetry of the configuration of loading planes.
Again because of symmetry the length of the strain vector can
only depend on the length of the stress vector and not upon its

direction. The stress-strain relation for nearly radial lcading

must be:
eg = F(XBXB) Xq (19)
In the more usual notation this is

ey) = F(Ip) sy, (16)

5 sk el

do BT PPTI Wrod e b

Aol
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which is immediately recognized zs the stress-strain relation
of J5 deformation theory. The form of the stress-strain rela-
tion for a broken line loading path with a large turning angle
is given in appendix B,

Another interestinz special case is slip theory. The

loading planes of slip theory in their initial positions are

given bys

= Sl _

where Xi and py are all possible pairs of orthogonal unit vectors

in physical space [1] . It is easy to verify that the vectors

sgq = KOy By + Ay ony) (18)

drawn from the origin, is normal to the corresponding plane
(in 9 dimensional stress space) and moreover terminates in the
plane, Also # Si? Si? = k% and % Si? Sji Skg = 0, Therefore
the planes of slip theory are all those planes tangent to the
surface Jy = k2 where J3 = O and no others., The samne holds

in x stress space. All these planes are to be treated ecually
because slip tleory applies to an initially isotropic material,
Here is a case 1n which not all planes available in stre
are put to use, Fven thoush all the planes used are initially
tangent to the sphere p = k the initial yield surface, as is

well known, is the Tresca yield surface. The stress-strain

relation is obtained from (12) by omitting the intesration with

respect to Qh’

PP

L M S N
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eq = fs’ H(f) &g sin &, d6; d6, d6; (H = 0,f < k) (19)

where S' is the intersection of J2 = k2

with J3 = 0. 7The
parameters 91,02,Q3 involved in the original formulation of
slip theory [5 ] were somewhat different.

In both of the preceding cases the function H(f) may
be obtained from a stress-strain curve by solving (in closed
form) a simple type of integral equation. In the general case
more experimental information than a stress-strain curve would
be needed to determine H(f,@h), and solving the corresponding
intezral equation would not be a simple matter. Of course a
form for H could he assumed involving a number of arbitrary
paraneters and then one could attempt to match the data by
adjusting the parameters, but at present it doesn't seem to be
worth while to pursue the matter any further,

If the loading path is such that the principal axes
of stress do not rotate then the loading path is confined to
the X1y Xp plane provided the piuvsical coordinates are referred
to the principal axes. Arain if tbhe only stresses imposed are
say 617 and d12 then the loading path is confined to the xl,x3
plane, In these cases the stress-strain relations based on
loading plenes in stress space can be rcduced to a form having
the appcarance of a stress-strain relation based on "loading
lines" in a "stress plane'", The reduction can always be made,
at least in theory. For simplicity the argument will be pre-

sented only for the case in which the initial yield surface is

N A M B e i B Nkl B et 2
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p = k and for the sake of being definite suppose the loading
path is confined to the X1 %p plane.

Consider a plane which has the trace t in the Xq,X,
plane before loading begins (see Fig. 8). Let OP be the
perpendicular from O to t and let Ol be the anzle between OP
and the X axis, Let 0Q be the perpendicular from O to the
plane in question and let 6, be the angle POQ. Suppose that
during the course of loading this plane is pushed out so that
its trace is now t'. The distance of the plane from the origin
which was 0@ = k is now 0Q' = OP' cos 6, = f, Consider now a
spherical coordinate system in which the Xq and x, coordinates

of Q are given by:

Xq k cos 02 cos ©

18
(20)

1}

Xo k cos ©o sin Ql

and x3,x1+,x5 are given in terms of 61595 and two more parameters
93’Oh (see for example appendix A Eq. A-28). ©Now since there

is a two parameter set of points Q on the sphere, all with the
sarne 69 and 6, coordinates, there is a two parameter family of
planes tangent to thc sphere with the same trace t in the Xq1,%p
plane as the plane considered sbove. The contribution of these
rlanes to the plastic strain is ~iven by:

21N o7
2 - iy = ) e
% e‘3 jo So H(f,J3 ) (B sin® 26, sin 03 dO3 de,, dol dO2

= § (£,01,6,) £ sin® 26, 46 49, (B = 1,2) (21)

PN TPTRITRerE,. Svee vopasee e o T

i
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=
jog
[0)
o]
D

ot
1

cos 8, 4 £, = sin ©; and H = 0, f < k. For values

of ©, between O and n/2 there 1s a continuous distribution of
parallel traces cach representing a two parameter family of
planes.* To obtain the strain due to moving out all those
planes whose traces fall between the one tangent to the circle
and the one at t' requires the integration of bzeB with respect
to 6, between the limits O and cos™l (x/0P"). Let OPF = f, then
Xcos'l(k/?) gg

° B(T cos 85,61, sin® 20, 46, 46,

dbe, =
B o

o

= & (F,0,) Ty a0 ; =0, f<k; (p=1,2) (229

6ep may be interpreted as the strain due to moving out a
"loading line” initially tangent to the yield boundary, moreover
beB is normal to this loading line. So long as the loading is '¥
in the X19%Xp planc be3 = beh = beS = O for an isotropic material,
otherwise the remaining strains may be expressed as single
integrals if so desired. MNote that up to this point the exact
shape of the (plane) loadins path has not cntered into the
calculations. To complete the analozy the plastic strain eB
is given as thz sum of the contributions from all the loading
lines,

02T —

eq = )o H(F,09) a6, s =0, T< ¥k ; (B=1,2) (23)

In appendix B the forecoinz reduction is carred out for the
case in wnich all planes arc treated cquallyv. A similar reduc-
tion to two dimensional loading planzs in a threec dimensional

stress spacc cnulid be made,

* The trace tangent to the circle represents one plane only,
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Induced Motion.

In the first section it was pointed out that a
realistic theory of stress-strain relations based on' piane
loading surfaces should provide for some sort of interdependzsnt
motion of planes to properly account for the chanzes in shape
of the yield surface as loading proceeds. A few assumptions
regarding the nature of this interdependence were made. Loading
of any given plane was assumed to cause an induced motion in all
other nlanes. It was proposed to separate the motion of a plane
into two parts, namely dirsct and induced, where the direct
motion is associated with the loading of a given plane and the
induced motion represents the effects on the given plane of
loading on all other planes, In this section enouzh analytical
detall is supplied to apply the theory to a few simple cases.

The contribution to the induced motion of a given
plane due to the direct motion of an arbitrary small group of

planes is assumed to be:

5T,(0) =F[ry(6'), 6, 0] da (ry > 0)

(2k)
=0 (rl = O)

where © and ©' denote the orientations of ths ziven and arbitrary
planes respectively., The total induced motion of the ziven

plane is obtained by swiming the contributions from all planes:

Ty = Jl F(ry, 6, ©') da (25)

R

o
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The total distance of any loading plane from the origin is

given by

(26)

o 2

where T, is the initial distance from the orizin. In the first
section certain other assumptions were made concerning the
direct motion., These were that only those planes moving in
sontact with the loading point could receive any direct motion
and that direct motion is a non-decreasing function of time as

loading proceeds., In symbols these aret

P -ng X >0=> 1 =0 (27)

ry 20 (28) k#

It is understood that:

T =g % 20 (29)

Note that:

I eng ¥g =0ABT >0 (30)

In addition to these assumptions it 1s expected that certain
restrictions must be placed upon F in order to obtain a con-
sistent theory,

Two examples are constructed in the following to
check the general reasonableness of the assumptions so far and

to gain some insight into tiie nature of the problem of deter-

-

mining the yield surface according to the present scheme, To 1

P -
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keep the calculations as simple as possible the initial yield
surface is taen to be p = 1 and the form of (25) is taken to

bes

(=5

T, = y rl(k + p cos V) da (31)
s

where X\ and p are constants and ¥ is the angle between the
normals to the planes whose orientations were denoted by © and
e'.

In the first example take ji = O, A > O and let the
loading pcth be coincident with the pesitive X7 axis, From
(31) T'n is a non-decreasing function of time alone. Thus the
yleld surface e:xpands uniformly except for the portion of the
surface affected by direct motion. As soon as the loading point
reaches Xy = 1 some planes begin to lcad. Assume for the moment
that once a plane begins to load it does not subsequently unload.

Then at any instant all planes which have been loaded nass

L W TR 3
througi

the loading point and 8ll planes which have no*t been loaded are
tangent to the expanding spherical part of the yield surface;

the planes just bz2ginning to losd do both. The picture is as

in Fig. 9., A corner in the yield surface appears at the loading
point P, The radius of the sphericel part of the yield surface

as a function of the 1load is calculated in appendix C. As

N - o the corner at P becomes blunter and vanishes in the 1limit,
In the appendix it is shown that for N finite the loading path may
turn through & certain angle without unlcading any planes which

have alrcady been lcaded, Suppose the loading point follcws

| =4
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such a ba2nt path, then at any instant the situation is exactly
the same as before except that P lies a little ways off the xp
axlis. The same configuration of loading planes would have been
produced had the loading point reached P by a radial path so
the direct motion of any vplane 1s the same in either case. As
A — oo the allowable turning angle goes to zero so there is no
rath independence in that case. If A = O then there is no in-
duced motion end we have the case of the last section, If A
is negative there is the possibility of two configurations of
loading nlanes for a gziven value of the load. Proper restric-
tions on F should rule out negative values of A, at least when
p = 0,

For the s:cond example ta%e A = O and p > 03 (31) be-
comes

N 3
Iy = p} ry cos Yda = p J ry Ng ng' da
uS s

= @ ng S; ry ng' da = ng A, (32)

where Ay sare constants, There is a simple geometrical inter-
pretation of the induced motion in this case. Suppose the
yield surface hes attained some irregular shape through loading
and then additional lcading talves nlace. What is the change in
shape of the yield surface due to the additioncl induced motion

alone? Consider a plane tangont to the vield surface at some

arbitrary point P. Cuppose P 1s displaccd to P' by the displace-

ment vector A, carrving the plane along with it (see Fig., 10).
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The distance the plane has been displaced parallel to itself is
ng Ay « Thus the induced motion given by (32) has the effect
of displacing the whole yield suwrface like a rigid boly. For
p positive the displacement is in the same general direction &s
the additional lcading. Of course the direct motion further
distorts the yield surface in the vicinity of the loading point.
The behavior for radial loading 1is similar to that of the first
example, that is for p finite a corner appears at the loading
point and again nearly radiasl lcoading paths exist. In this
case also the corner disappears for o = o and nearly radial
becomes strictly radial. The calculations are given in appendix
C. For sufficiently large negative values of p there is the
possibility of two configuratlions of loading plsnes for = given
value of the load. The reader may notice other inconsistencies
for negative values of A and p3; at any rate these examvles show
that there is a definite need for restrictionson ¥,

A combination of these two examples gives the type of
behavior referred to in the first section. Here again the stress-
strain relation would agree with J, deformaticn theory for

nearly radial loading paths.

(=) 4

Observations and Conclusions.

The plane loading surface has been used as the funda-
mental building block, so to speak, in the construction of stress-
strain relations of a quite general type. Consideraztle flexi-

bility has been gained by assuming the displacements of the



A11-106 25

various planes to be interrelated. In many special cases of the
present theory the plastic strains are path independent to a
certain extent and a special class of loading paths exist, called
nearly radial, for which the stress-strain relations reduce to
those of & deformation theory. Nearly radial loading paths were
shown to exist in all cases not involving induced motion and
even in scme cases where induced motion of the loading planes is
allowed, It is quite probable that nearly radial loading paths
exist whenever the function F is bounded. Further theoretical
investigations should be made to settle the question, Certainly
the validity of the theory should be tested by commarison with
experiment.

It was remarked in an earlier section that the
yield surfaces of some known theories could be duplicated
by 1limiting cases of the present theory. It is extremely
interesting to look into the corresponding question con-
cerning the two stress-strain relations. Only a cursory
examination is necessary to show that the known strecsse
strain relations cannot be obtained as limiting cases of
the present theory., Consider the case of the first example
discusscd in the text and let N be very large; then the
yiecld surfacc is very ncarly that according to simple J2
flow theory. Supposc loading in tension has procceded up
to a certain point and then the load is removed, Now
compare the stress-strain curves for loading in com-
pression according to Jo flow theory and according to the
present theoory. According to Jo flow theory there will be

a sharp break in thc stress-strain curve at the yield point,
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but according to the present thecry the stress-strain curve will
be smooth because the planes tangent to the sphere on the com-
pression side have not been previously loaded., At first sight
this may seem distressing, onc might have hoped that the prescnt
theory would be general cnough to include such a classic example
as J2 flow theory as a limiting case. However, the experimental

facts are in favor of the present theory, qualitatively at least,

Stress-strain curves in compression followinz stressing in tension

arc always found to be quitec smooth [12] . Even those linear
incremental stress-~strain relations which exhibit a Bauschinger
effect predict a sharply defined yield point for such an experi-
ment as that described above,

Morc complicated experiments have been performed in
which the material is first stressed in tension and then loaded
in some way other than mere compression. The experiments of
Taylor and Quinney [13 ] and of Klingler and Sachs [ 14] were of
this type. In all cascs the rcported stress-strain curves for
the second loading are gquite smooth as would be predicted by a
stress-strain relation of the tyre considercd in this paper. On
the other hand it is a well known fact that the stress-strain
curve for a second loading in tension does have a rather sharply
defined yield point, This singular bchavior at a point on the
yield surface whorce loading has recently occured may be regarded
as evidence for cornzrs in the yield surface, The fact that any
intermediate Joading (before the socond tension test) is likely

to destroy the sharpness ol the yield point is also evidence in
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support of a theory of the prescnt type. For some rcason
(possibly crecp) the stress-strain curve for reloading in tension
does not always have a perfectly sharp break at the yicld point;
the same reason may explain why corncrs have not always been
found by those cxperimenters who have looked for them [87],[ 15 L

Certainly the prescent theory is far from being well
developed and much remains to be done before it can even claim to
be acceptable., Even so fundamental a condition as the work
hardening condition is not automatically satisfied unless re-
ctrictions are placed on the rule governing the induced motion.
These restrictions, and possibly others necessary to insure

uniqueness, arc yct to be discovcred.
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Appendix A

Five-dimensional stress space.

If plastic strains are assumed to beé incompressible
then the stress-strain relations and the yield surfacc depend
only on the stress deviator and not upon Jl = d34 . This means
that in the usual nine-dimensional stress space thi¢ yiecld sur-
face i1s a cylinder normal to the plane ¢33 = O, Rather than
represent stress in this nine-dimensional space in which each
comnonent of stress acts as a coordinate it is more convenient
for present purposes to choose some other system of coordinates
which better fits the yield surface. Since the stress deviator
has only five indenendent components it is possible to represent
it geometrically in a suitably chosen space of five dimensions.
Methods similar to the one given below for constructing a stress
space exist in the literature [16 ], [17 ]but they are usually
not given in much detail so the one used in this paper will be
discussed in this anpendix.

The stress space chosen here is a subspace of the

usual nine-dimensional stress space. The coordinates in this

subspace are chosen in the followinz way. The X¢ axis (which will

later be ignored) is taken normal to the rlane 633 = O. The
Xq axis is the projection of the 611 axis on the plane 4 = 0
and the X5 axis is teken normal to the x7 and X¢ axes so that
Xys oy Xg forms a right-handed system of coordinates. The

scale of measurement on the x,, X5y Xg axes is distorted by a
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factor of V2 for a reason which will be given later. The equa=-

tions of transformation between the two systems of ccordinate are:

X, = L (20697 - Oney - Gan)
il Wi 11 2 83
Xy = 1 (055 = 033) (A=1)

2
X = V%E (097 + 055 + 033)

Three more axes x3, X s and x5 are added to accommodate shears:
X3 = 't:l2
X, = Toy (A=2) f
fa—
S5 S s ‘#

so that x,, Xy eeey Xg is a rectangular cartesian system cf co-

ordinates, The reason for the factorV @ is the following: under

a rotation of physical coordinates cij behaves like a second

order cartesian tensor, the factor V2 is necessary in order that

Xq , (¢ =1,2,,..6), should transform like a cartesian vector. i

The relations (1) and (2) may be compactly written as

follows:

*a = Bargy 914 (A-3)

in which Ba’ij are a set of 3x3 matrices whose definitions are:

PR
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- - - 5
2 0 0 0 0 O
- 1 = i . -1 0 s
Bl’ij = 5?? 0-1 0O |3 B2’ij ] @ 1L 3
|0 0 =1 ] |0 0 -1 |
0 0 0 | 0 0 1
_ 1 ) ol
B)+, ij - §' O O 1 9 Bs, ij ==} § O O O 7
|0 1 O i 1 0 O

-
-1
B3riy ‘§t

. B6’ij:"

o O +H O +H O

32
1 O
0 0
0 0
0 O
1 O
0 1

(A-4),

Since all formulas concerning plastic strains do not irwolve the

Xg coordinate this ccordinate will be dropped and the range of

summation on the Greek indices will herecafter be understood to

run from 1 to 5. The quantities Ba’ij satisfy the following

identities which are easily verified.

B = B

vy ar ji

Ba’ii = O

_1 2
Boij Bkt = & (Piw Oy % 0548 = 5 %15 % -

(A-5)

The components of x, depend only on the stress deviator as is

shown directly by the following:

X(I'-'-Ba,ij 0..=B (S-.""Sb..):B s

ij a’ij 1] ij a’i]j

i}

4+ s B S

aii = Paryy Sy

(A-6)

Equation 6 may be solved for the componcnts of the deviator in

mun:’rsr_o. aZ .
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terms of X 3 the result is:

s13 = 2 Bwrij *q (A=7)
From (7) and (%) it follows:
J2 = %- Sijsij =02 Ba,ijBB,ij XaXB = banaX{:i = X4Xq (A-8)

that is the lenzth of a stress vector x4 is VJ .
Anzlogous to the stress vector a plastic strain vector

is defined as follows:

- p
ea = 2 Ba,ij Eij (A-g)
The stress-strain relation for a linear stress theory of plas-

ticity recads as follows in the present notation:

_n af P
de, = G(f) = af (A-10)

as may easily be verified. The tensor character of this relation
is preserved in the present representation and as before the

plastic strain increment is normal to the loading surface.

A coordinate system for isotronic materials,

The gcometrical representation of J, as given in the

last section is quite simple but what about J3? Explicitly I3 iss

[EEY

= - 2 v 3 2 2 1 2

33 Y& V3 753

+ x5.2) + }(2(}(32 - xge) + 2x3xhxF

(A-11)

e

g
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which is a rather awkward expression. There is a simple repre-
sentation of J3 in case sjy = 0, 1 # j, in which case X3 = X,

= x5 = 0, If polar coordinates are intrcduced into the 1,2 plane

letting:
X, = pcos e
(A-12)
X, = psin ©
then we find:
J.=@F 3 I, = 203 cos 30 (A-13)
. 333
The corresponding values of sij are:
2
sq7 = £ cos 6
11
V3
- . 2P T L
soop = = £E cos (6 + %) (A-1k)
V3 3
2 e
s.. === cos (8 - %)
33 3 3

The reason for introducing J, and J3 is of course that they are
invariant under rotations of the physical coordinates and hence
play 2 prominent role in the description of initially isotropic
materials. V¥e would like to construct a coordinate systen in
stress space convenient for such a description. 1In order to gain
a little insight into the problem we consider the effect on the
vector X, of subjecting the corresponding tensor s;; to a rotation

1]
in physical space, As is easily checked using (5) the new vector

L W b s

R T

|
|
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Xq' corresponding to the new tensor Sij is related to the wvector

Xq Dy a rigia body rotation in stress space. That is to say

xg' = Agp Xp (4-15)

where Aqp 1s an orthogonal matrix. If a3 is the rotation

tensor in physical space then AQB is given by:

Aap = 2 a3y 250 Boriy Bpoxd (A-16)

Thus to every rotation in physical sprace there corresponds a
rotation in stress space. The correspondence between rotations
however 1s not one to one., There is a .en parameter group of
rotations in the five dimensional stress space but only a three
parameter sub-group of them corresponds to the three parameter
group of rotations in physical space. The somewhat messy
expression (11) is of course an invariant of this sub-group.

The correspondence between rotations in physical space
and a certain group of rotations in stress space suggests at
least one way in which a coordinate system especially adapted
to the description of isotropic materials may be defined. We
first note that for a given stress tensor the coordinate system
in physical space can always be rotated into a system of princi-
pal axes for that stress tensor. This means that in stress

space an arbitrary vector x_ can always be rotated into the 1,2

a
plane by a rotation belonging to the abhove mentioned sub-group.
This can be accomplisnhed in six different ways corresponding to

the six choices of right handed principal axes in physical space.

{iﬂ
e
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This means that in stress space an arbitrary vector x; can be
rotated into any one of six equal sectorsin the 1,2 plane by a
rotation belonging to our sub-group. Thus the stress veccors
Xy in the sector of the 1,2 plane 0 < © < % are representative
of all vectors in stress space through these rotations., The

coordinate system is constructed as follows. Choose a vector

in the 1,2 plane given by its length o and the angle Ou it makes
z
3 L]

rotation belonging to our sub-group which will involve three

with the Xq axils where 0 £ 6, £ Next apply an arbitrary

parameters, call them 6;, ©, and 93. The resulting vector:

Qu) (A=17)

can be any vector in stress space so (16) can be regarded as the
equations defining a transformation from x coordinates to p, ©
coordinates. With suitable restrictions on the range of €y, 92
and 93 the new coordinate system covers stress space once and
only once, Obviously the valuss of J2 and J3 are the same for
any two stress states which have the same p and 6, coordinates
because these quantities are unaffected by rotations. Expres~
sions for these inveriants are still ziven by (13) where we take
e to be Oh’ The principal deviatoric stresses in the order

S] 2 Sp 2 sy are given by (14) when 6, is restricted to the
range 0 § 6, < % . As e&n oxample of the use of this coordinate
system note that the equation of the initial yield surface of

an isotropic material must be of the form:
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p =P (§) (A-18)

The explicit form of (17) may be obtained straight-
forwardly but the calculations are somewhat tedious so only

the results will be given here. TFirst let:

Xg =P &4 (A-19)

then £, = £, (8p), (p = 1,2,3,4), defines a system of coordinates
on the unit sphere in stress space. Expressions for ia are as

follows:

o

{l (1+3 cos 292) cos @, + lg (l-cos 265) cos 293 sin 94

£, = Yg(l-cos 26,) cos 26, cos 6 + %(3
+cos 26,) cos 26, cos 293 sin 6,

- COS 92 sin 291 sin 293 sin QH

)
)

1}
ok

5 D
sin 292 cos 91 cos Oh 5 sin 292 cos 91 cos 293 sin O”
4+ sin 65 sin 91 sin 293 sin Ql+
Ey = ig (l-cos 292)sin 26, cos @, + %(3
+cos 292)sin 291 cos 293 sin Oh

+ cos 92 cos 291 sin 293 sin Gh

vV

ok

sin 20, sin ) cos G, - 5 sin 26, sin 6; cos 205 sin @,

- sin 92 cos Ol sin 293 sin 6, (A-20)

- b2y e —
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The ranges of the angles ©_ are as follows:

p
0<£6 <em 0« 93 <n
T
0£6, < 0<6 < 3 (A-21)

The angles 6 _ are suitable as a system of coordinates on the

p
initial yield surface of an isotropic material which is given

by
Xq = P(6y) &4 (6p) (a-22)

The element of area on this surface is given by:

da = 2°% [1 + (2'/P)21% sin 6, sin 36, de; de, d6y 46, (4-23)

The unit normal vector to the surface is given by:

g - B %%g
a P a6,

g (a-24)

C[1+ (P'/P)21%

Yield surfaces.

In this section a few well known facts concerning the
initisl yield surface for an isotropic material are restated in
terms of the system of coordinates given in the last section.
Such a yield surface is of course invariant. under those rotations
in stress space which correspond to rotations in physical space.
Obviously the yield boundary in the 1,2 plane determines the
whole surface, in fact the arc of the boundary which lies in
the sector 0 £ 6, ¢ % is sufficient to determine the whole sur-

face. Three of the axes of the permissable rotations lie in

& A
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the 1,2 plane; one is the x, axls and the other two make angles

1
of % with the x. axis. These three lines must therefore be axes
of symmetry of the yield boundary.1

The yield surface must also be convex.2 It is easy to
show that 1f the yield boundary in the 1,2 plane is convex then
this condition is satisfied, Let us assume that P(Ou) has two

continuous derivatives. The condition of convexity is explic-

itly:

2

PP +2P'2 PP" > 0 0¢ & <

T
3
x (4-25)
P1(0) <0< P ()

The equality sign holds in the first inequality for a straight
line. The Tresca yield surface is a special case of this latter
possibility. If the yield surface is o be smooth the yield
boundary in the 1,2 plane must meet the rays O,Jr = 0 and Qh =

3
at right angles, this will be true if:

P = R(cos 39h) (A-26)

where R is regular for 0 6, g_%-. If in addition we are to

have point symmetry about the origin then

P = R(cos? 36,) (A=27)

A1l members of the sub-group except the identity have one
fixed axis.

By this we mean that no part of a straight line segment join-
ing any two points of the yield surface falls outside the
yield surface,

-
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The fact that the yield surfaces (initial or subsequent)
considered in this paper are always convex is intuitively
obvious considering the fact that they are all the "innermost"

envelope of a set of plancs.

Some additional spherical coordinate systems.

Several orthogonal systems of coordinates on the unit
sphere in five dimensions may be manufactured as in the follow-
ing example. Let the projcction of an arbitrary unit vector on
the (x1,Xp) subspace be of length cos €5 so that the length of
the projection on the crthogonal complement (x3,xu,x5, 1S

sin 92. Let the projections on the Xy and x, axes be:

51 cos 02 cos 91
(A-28)

&0

cos 92 sin Gl

as in plane polar coordinates, In the (x3,xu,x5) subspace the
projections on the axes are made as in ordinary spherical polar

coordinates to give:

]
1l

sin S sin @3 cos &

3 i
), = sin 6y cos o3 (A-28)!
€5 = sin 8y sin 65 sin §

The ranges of the variables are:

il
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- (A-29)
06, <3 0 <9, <2
The element of area on the unit sphere is given by:
o = B 2 : ~ i
da = cos ©, sin 6, sin 93 d@l d@2 dG3 dug (A-30)
J3 is given by:
L g, =_2 cos3 o, cos 30, -L_ cos 6. cos O, sin® 6, (1 -
3 3 373 2 1 573 1 2 2

- 3 cos 293) + sin? 92 sin2 93(sin 91 cos 02 cos 294
+ sin 92 cos 93 sin 294) (A=31)

Another system of coordinates is:

El = COs 91

£ = sin ©; sin 65 cos o3 0 < Gl <=
Ey = sin 6, cos 6y cos @ 0 <6 < g
Eh = sin Gl sin @, sin 93 0 < 93 < 2%
&5 = sin ©6; cos 6 sin 6, 0 £6,< 2m

da = sin3 0) sin 6, cos 6, 40; 40, d6, 46,

313 S . 2 2 R
2p3 J3 = COS 391 + % sin 91 cos 92,[3 cos sy

+ V3 sin 6, sin 6, cos (26, - 93)] . {A=32)

P

o8t
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Appendix B

Solving for H(f).

Make the Xq coordinates dimensionless by letting:

]
Xa = -E Ba’ij dij (B'l)

where k is the yield stress in nure shecar., Let the yield
surface be p = 1 and trecat all planes equally, then the stress-

strain relation is:

eq =j H(f) £ _ da (B-2)
S

The function H has to be determined in terms of experimental

information, say a stress-strain curve in tension. Let this

be given bys

6. =E ¢ (B-3)

where Es is the sccant modulus. The plastic part of the strain

is 2iven by:

For a simple tension test oy, =V3 x) =y3p and e; =3 ¢ P
so (4) beccomes:

e = 3 - 2)p = 2F(p) (B-5)
In the polar coordinate system defined by eqs. (A=-32) the

distance of a plane from the origin for the present path is:

- =

P
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£f = p cos 67 (B-6)
(sec fig. 11) and (2) becomes:

2r(p)

S, .% 210027
j So E H(p cos ©p)cos Olsin3glsin 6pcos 6pd6,d63de,de,

o o Uo
(B-7)
2 S
= 2n X H(p cos Ol) cos ©; sin391 de; (B-8)
o
Let = p cos 6, then (8) becomes:
L P
p Flp) = x 51 H(N) n (p2 - n2) dn (3-9)
This may be solved for H by mcre diffcrcntiation to give:s
Hp) = [ (p¥F)' p]' /222 (B-10)

Reduction to loading lincs.

For loading in the Xq,xp plane it is convcnicnt to
rcformulatce the problem in terms of loading lines in that plane,
In the precsent case of coursc, beccausc of symmectry, cxactly the
samc analysis applics to say the xl,x3 planc or any othcr flat
two dimensional subspacc of stross spacce which includes the
origin. Thc solution in these other cases may be obtained from
that in the x,,%, planc by a transformation of coordinates or
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